6,935 research outputs found

    Spin Tunneling, Berry phases and Doped Antiferromagnets

    Full text link
    Interference effects between Berry phase factors in spin tunneling systems have been discussed in recent Letters by Loss, DiVincenzo and Grinstein and von Delft and Henley. This Comment points out that Berry phases in spin tunneling are important in another interesting case: the two dimensional doped antiferromagnet. I show that the dispersion of a single hole in the t-J model changes sign as e2πse^{2\pi s} where ss is the size of the spins. This provides an interpretation of the numerical results for the s=\half model, and a prediction for other spin sizes.Comment: 5 pages, LaTe

    Money and stock prices

    Get PDF

    Effects of non-adiabaticity on the voltage generated by a moving domain wall

    Full text link
    We determine the voltage generated by a field-driven domain wall, taking into account non-adiabatic corrections to the motive force induced by the time-dependent spin Berry phase. Both the diffusive and ballistic transport regimes are considered. We find that that the non-adiabatic corrections, together with the contributions due to spin relaxation, determine the voltage for driving fields smaller than the Walker breakdown limit.Comment: 8 pages, 3 figure

    Antiferromagnetic Spinor Condensates are Quantum Rotors

    Full text link
    We establish a theoretical correspondence between spin-one antiferromagnetic spinor condensates in an external magnetic field and quantum rotor models in an external potential. We show that the rotor model provides a conceptually clear picture of the possible phases and dynamical regimes of the antiferromagnetic condensate. We also show that this mapping simplifies calculations of the condensate's spectrum and wavefunctions. We use the rotor mapping to describe the different dynamical regimes recently observed in 23^{23}Na condensates. We also suggest a way to experimentally observe quantum mechanical effects (collapse and revival) in spinor condensates.Comment: minor revisions. some typos correcte

    Mandatory Access and the Information Infrastructure

    Get PDF

    Spin pumping by a field-driven domain wall

    Full text link
    We calculate the charge current in a metallic ferromagnet to first order in the time derivative of the magnetization direction. Irrespective of the microscopic details, the result can be expressed in terms of the conductivities of the majority and minority electrons and the non-adiabatic spin transfer torque parameter β\beta. The general expression is evaluated for the specific case of a field-driven domain wall and for that case depends strongly on the ratio of β\beta and the Gilbert damping constant. These results may provide an experimental method to determine this ratio, which plays a crucial role for current-driven domain-wall motion.Comment: 4 pages, 1 figure v2: some typos corrected v3: published versio
    corecore